2050A Revision Exercise: 2017 1st term

- 1. Use the ε - \mathbb{N} definition to show that $\lim \frac{n+(-1)^n}{n^2-1} = 0$.
- 2. Use the ε - \mathbb{N} definition to show that $\lim_{n \to \infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} \right) = 1.$
- 3. Using the definition show that the sequence $\left(\frac{n^2+1}{2n+1}\right)$ diverges to ∞ .
- 4. Show that if $x_n > 0$ and $\lim x_n = a$, then $\sqrt{x_n} \to \sqrt{a}$.
- 5. Suppose that $x_1 > y_1 > 0$ and $x_{n+1}x_ny_n$ and $y_{n+1} = \frac{x_n + y_n}{2}$. Show that $\lim x_n$ and $\lim y_n$ exist, moreover, $\lim x_n = \lim y_n$.
- 6. Show that if $\lim x_n = a$ exists, then $\lim \frac{x_1 + \dots + x_n}{n} = a$.
- 7. Show that if (x_n) is an unbounded sequence, then there is a subsequence (x_{n_k}) diverges to ∞ .
- 8. Suppose that (x_n) is an unbounded sequence and does not diverges to ∞ . Show that there are two subsequences (x_{n_k}) and (x_{m_k}) of (x_n) such that (x_{n_k}) diverges to ∞ and $\lim_k x_{m_k}$ exists.
- 9. Suppose that |r| < 1 and (a_n) is bounded. Let $x_n := \sum_{k=0}^n a_k r^k$. Show that the sequence (x_n) is convergent.
- 10. Using the definition, show that $\lim_{x\to -1} \frac{x-3}{x^2-9} = \frac{1}{2}$; $\lim_{x\to\infty} \frac{x-1}{x+2} = 1$ and $\lim_{x\to\infty} \frac{x^2+x}{x+1} = \infty$.
- 11. Let $x \in [0, 1]$ and f(x) = 0 if $x \in \mathbb{Q}$; otherwise, f(x) = 0. Find the right and left limits of f at x = 1/2.
- 12. Show that $\lim_{x\to\infty} f(x) = L$ exists if and only if for any sequence (x_n) with $x_n \to \infty$, we have $f(x_n) \to L$, where $L \in \mathbb{R}$ or $L = \infty$.
- 13. Let f be a function defined on [a, b]. Suppose that $\lim_{x\to c\pm} f(x)$ both exist for all $c \in [a, b]$. Show that f is bounded.
- 14. If f and g are continuous functions on \mathbb{R} , show that the function $h(x) := \max(f(x), g(x))$ for $x \in [a, b]$ is also continuous.
- 15. Let f be a continuous function defined on [a, b]. Let $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ be any partition on [a, b]. Show that there is $\xi \in [a, b]$ such that $f(\xi) = \sum_{k=0}^{n} \frac{f(x_0) + \cdots + f(x_n)}{n+1}$.
- 16. Show that if f is a continuous strictly positive function on [a, b], then $\frac{1}{f(x)}$ is also continuous on [a, b].
- 17. Prove by the definition that the functions $f(x) = x^{1/3}$ is uniformly continuous on [0, 1]and $g(x) = \sin x^2$ is not uniformly continuous on \mathbb{R} .
- 18. Is the function $f(x) = x^2$ uniformly continuous on \mathbb{R} ?
- 19. Is the function $f(x) = \frac{\sin x}{x}$ uniformly continuous on $(0, \pi)$?
- 20. Let f be a continuous function defined on $[a, \infty)$. Show that if $\lim_{x\to\infty} f(x)$ exists, then f is uniformly continuous on $[a, \infty)$. Is the converse true?
- 21. Show that if f is a uniformly continuous function defined on (a, b), then f is bounded.